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Hippocampus Shape Analysis via Skeletal 2

Models and Kernel Smoothing 3

Eduardo García-Portugués and Andrea Meilán-Vila 4

Abstract Skeletal representations (s-reps) have been successfully adopted to 5

parsimoniously parametrize the shape of three-dimensional objects and have been 6

particularly employed in analyzing hippocampus shape variation. Within this 7

context, we provide a fully nonparametric dimension-reduction tool based on kernel 8

smoothing for determining the main source of variability of hippocampus shapes 9

parametrized by s-reps. The methodology introduces the so-called density ridges 10

for data on the polysphere and involves addressing high-dimensional computational 11

challenges. For the analyzed dataset, our model-free indexing of shape variability 12

reveals that the spokes defining the sharpness of the elongated extremes of hip- 13

pocampi concentrate the most variation among subjects. 14

Keywords Density ridges · Dimension reduction · Directional data · 15

Nonparametric statistics · Skeletal representations 16

4.1 Introduction 17

Mental illnesses are prevalent and highly debilitating disorders that affect a sub- 18

stantial proportion of society. Various studies have shown that there is a direct 19

relationship between the etiology of mental diseases and the deformation of more 20

vulnerable parts of the brain, such as the hippocampus (see, e.g., [1]). Hence, the 21

analysis of hippocampus shapes is a relevant target of medical research and a useful 22

instrument for informing it. The present work contributes towards this analysis by 23

introducing a new method to determine the main variation of three-dimensional 24

shapes, like hippocampi, that are instantiated in the form of skeletal models. 25

Statistical shape analysis of three-dimensional objects [2] can be enhanced by 26

using skeletal models, as these capture the interior of objects, and therefore, they 27
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more stably and richly collect object shape than models that capture only its 28

boundary. These models explicitly capture the width of the objects, the normal 29

directions, and the boundary curvatures [3]. Skeletal models contain a skeleton, 30

which is centrally located along the object, and the spokes (vectors originating 31

from the skeleton terminating at the object boundary), such that the spokes do not 32

cross within the object [4]. A general construction of these models is the skeletal 33

representation, referred to as s-rep [5]. The rigorous statistical analysis of skeletal 34

models requires the development of tailored novel methods, this constituting an 35

instance of the so-called object oriented data analysis [6]. There is a substantial 36

literature involving s-reps, see, for example, [7, 8], and [9], among others. See also 37

[10] and the recent survey by [11] for a complete review of skeletal models. 38

The dataset considered in this work consists of .n = 177 hippocampus shapes that 39

are instantiated in the form of s-reps (see [3]). Figure 4.4 shows the s-reps of two 40

characteristic hippocampi. The spokes are the segments (in varying colors) joining 41

the inner skeletal points (in black) with the boundary points (also in varying colors, 42

some of them numbered). Each hippocampus has .r = 168 spokes with associated 43

radii and directions. The directions of these spokes lie on the polysphere .(S2)168, 44

where .(Sd)r := S
d× r· · · ×Sd , with .S

d := {x ∈ R
d+1 : ‖x‖ = 1} and .r, d ≥ 1. 45

The shapes of the hippocampi constituting the analyzed dataset are different, but 46

their inner skeletal points share roughly matching configurations. Therefore, it 47

is reasonable to consider the average inner skeletal configuration as a common 48

reference, and then investigate the vectors that lead from it to the boundary. Fixing 49

also the radii of these spokes to their averages across subjects allows a reduced 50

representation, as an observation on .(Sd)r (size is ignored), of the hippocampus 51

shape captured by an s-rep. 52

Traditionally, Principal Component Analysis (PCA) has been used to describe 53

the main features of the data by estimating the principal directions of its maximum 54

projected variance. In the framework of skeletal models, modes of variation 55

on the sphere based on a non-geodesic approach can provide more appropriate 56

dimensionality reduction [4, 12]. Following this strategy, [13] introduced Principal 57

Arc Analysis (PAA), which uses small circles on the sphere .S
2 to parametrize 58

the main source of variation. Principal Nested Spheres (PNS) is the extension of 59

this method to the hypersphere .S
d [14]. An alternative to the previous parametric 60

approaches for summarizing the primary characteristics of the data consists of 61

generating flexible principal curves informed by the underlying density of the data. 62

Density ridges extend the concept of modes and rely on the gradient and Hessian of 63

the density function [15]. Although density ridge estimation is a challenging task, 64

which can be addressed with an appropriate smoothing-based estimator, it entails a 65

much larger flexibility over fixed parametric modes of variation (e.g., small circles 66

on .S
d ). 67

We introduce in this work a novel fully nonparametric dimension-reduction 68

technique for polyspherical data. The proposed methodology involves estimating 69

density ridges for .(Sd)r -valued data, which entail a specific kernel density estimator 70

and the computation of its .(Sd)r -adapted gradient and Hessian. The estimation of 71
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density ridges applies an Euler-like algorithm that presents several high-dimensional 72

computational challenges, and thus we describe keys and guidelines for its imple- 73

mentation and practical use. We propose an effective data-driven indexing and 74

parametrization of the set of .(Sd)r -valued points that is outputted by the Euler 75

algorithm to attain a ridge analog of a (first) principal component curve. Marching 76

along this ridge principal curve is especially useful to visualize the main mode of 77

variation on the original s-rep space. We also highlight this work gives a proof of 78

concept of the applicability of density ridges in high-dimensional settings. 79

The rest of this chapter is organized as follows. Section 4.2 introduces a new 80

dimension-reduction method to determine the main shape variation of three- 81

dimensional objects parametrized through s-reps. The approach requires two 82

tailored smoothing techniques (Sect. 4.2.1). On the one hand, a kernel density 83

estimator for polyspherical data and its derivatives (Sects. 4.2.1.1–4.2.1.2), and, 84

on the other hand, a kernel regression estimator for .(Sd)r -valued response 85

(Sect. 4.2.1.3). Density ridges are presented in Sect. 4.2.2 for the population 86

Euclidean (Sect. 4.2.2.1) and sample polyspherical (Sect. 4.2.2.2) cases. The details 87

of the advocated density ridge estimation procedure are elaborated in Sects. 4.2.2.3– 88

4.2.2.5. Section 4.3 shows the results of applying our methodology. Specifically, 89

an illustrative numerical example on .(S2)2 (Sect. 4.3.1) and the visualization of 90

the main mode of variation of the aforementioned hippocampi data (Sect. 4.3.2). A 91

critical discussion of the methodology and the identified open areas for improvement 92

is provided in Sect. 4.4. Proofs are relegated to the appendix. 93

4.2 Methodology 94

4.2.1 Kernel Smoothing on the Polysphere 95

4.2.1.1 Density Estimation 96

Let f be a probability density function (pdf) on .(Sd)r ⊂ R
r(d+1) with respect to 97

the product measure .σd,r := σd× r· · · ×σd , where .σd is the surface area measure 98

on .S
d . Let .X1, . . . , Xn be an independent and identically distributed (iid) sample 99

from f . Let .x = (x′
1, . . . , x′

r )
′ ∈ (Sd)r , with .xj = (xj1, . . . , xj (d+1))

′ ∈ S
d for 100

.j = 1, . . . , r , and set .h := (h1, . . . , hr )
′ ∈ R

r+. We consider the kernel density 101

estimator (kde) of f at .x defined as 102

.f̂ (x; h) := 1

n

n∑

i=1

Lh(x, Xi ), Lh(x, y) := cd,L(h)L
(
(1 − x′ � y) � h�(−2)

)
, .

(4.1)

L(s) :=
r∏

j=1

Lj (sj ), cd,L(h) :=
r∏

j=1

cd,Lj
(hj ), (4.2)
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where .� denotes the Hadamard product, .y = (y′
1, . . . , y′

r )
′ ∈ (Sd)r , and 103

.A � B :=
⎛

⎜
⎝

A11B11 · · · A1rB1r

...
. . .

...

Ar1Br1 · · · ArrBrr

⎞

⎟
⎠

stands for a “block-in-block matrix product” between the r-partitioned (either in 104

their rows, columns, or both) matrices .A = (Aij ) and .B = (Bij ), .1 ≤ i, j ≤ r . The 105

type of r-partition of the two matrices involved in the product will be clear from the 106

context given the product space structure; e.g., .x′ � y := (x′
1y1, . . . , x′

ryr )
′ ∈ R

r . 107

The normalizing constant of the j th kernel .Lj : R+
0 → R

+
0 in (4.2) is defined as 108

.cd,Lj
(hj )

−1 :=
∫

S
d
Lj

(
1 − x′

j yj

h2
j

)

σd(dxj ).

The most common kernel is the von Mises–Fisher (vMF) kernel, .LvMF(t) := e−t , 109

for .t ≥ 0, although the “Epanechnikov” kernel, .LEpa(t) := (1 − t)1{0≤t≤1}, is more 110

efficient on .S
d . The normalizing constant for the vMF kernel is 111

.cd,LvMF(h) = [
(2π)(d+1)/2I(d−1)/2(h

−2)e−1/h2
hd−1]−1

, (4.3)

where .Iν is the modified Bessel function of the first kind and .νth order. For .d = 2, 112

a numerically stable form for (4.3) when .h ≈ 0 is 113

. log(c2,LvMF(h)) = −[
2 log(h) + log(2π) + log1p

( − e−2/h2)]
,

where .log1p(x) is the numerically stable computation of .log(1 + x) for .x ≈ 0. 114

4.2.1.2 Gradient and Hessian Density Estimation 115

To derive the gradient and Hessian of the kernel density estimator introduced 116

in (4.1), let us first consider the radial extension of .f : (Sd)r → R
+
0 given by 117

.f̄ : Rr(d+1)\{0} → R
+
0 such that .f̄ (x) := f (x̄), where .x̄ := proj(Sd )r (x) := 118

(x′
1/‖x1‖, . . . , x′

r/‖xr‖)′ ∈ (Sd)r , for .x ∈ R
r(d+1)\{0}. The reason for this 119

extension is the necessity of taking derivatives on f , defined on the closed support 120

.(Sd)r . 121

The following result provides the expressions of the gradient and Hessian of 122

.f̄ (x), for .x ∈ (Sd)r . These statements are required for deriving the gradient and 123

Hessian of the kernel density estimator, that is, .
¯̂

f (x; h) = f̂ (x; h), for .x ∈ (Sd)r . 124

Proposition 1 Assume that .f̄ is twice continuously differentiable on .(Sd)r . Then: 125
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1. The (row) gradient vector of .f̄ at .x ∈ (Sd)r is .∇f̄ (x) = (∇1f̄ (x), . . . ,∇r f̄ (x)), 126

.∇j f̄ (x) = ∇j f (x)(Id+1 − xj x′
j ), j = 1, . . . , r,

where .Ip stands for the identity matrix of size p. 127

2. The Hessian matrix of .f̄ at .x ∈ (Sd)r is 128

.Hf̄ (x) =
⎛

⎜
⎝

H11f̄ (x) · · · H1r f̄ (x)
...

. . .
...

H1r f̄ (x)′ · · · Hrr f̄ (x)

⎞

⎟
⎠ ,

where 129

.Hjj f̄ (x) = (Id+1 − xj x′
j )Hjj f (x)(Id+1 − xj x′

j ) − (∇j f (x)xj )(Id+1 − xj x′
j )

− [
xj∇j f (x) + (xj∇j f (x))′ − 2(∇j f (x)xj )xj x′

j

]
, (4.4)

Hkj f̄ (x) = (Id+1 − xkx′
k)Hkj f (x)(Id+1 − xj x′

j ),

with .j, k = 1, . . . , r , .k �= j . 130

Remark 1 The addend (4.4) is the only j th-term in the gradient and Hessian 131

expressions that is not orthogonal to the subspace spanned by .xj . 132

Remark 2 For a kernel .L : R
+
0 → R

+
0 , we have that .∇L((1 − x′y)/h2) = 133

−h−2L′((1 − x′y)/h2)y′ and .HL((1 − x′y)/h2) = h−4L′′((1 − x′y)/h2)yy′. This 134

holds for the aforementioned kernels .LvMF and .LEpa. These kernel derivatives are: 135

.L′
vMF(t) = −e−t , .L′′

vMF(t) = e−t ; .L′
Epa(t) = −1{0≤t≤1}, .L′′

Epa(t) = 0. 136

From Proposition 1 and Remark 2, the block gradients and Hessians of .
¯̂

f (·; h), 137

.∇j
¯̂

f (·; h) and .Hkj
¯̂

f (·; h), follow immediately from those of .f̂ (·; h): 138

.∇j f̂ (x; h) = − cd,L(hj )

nh2
j

n∑

i=1

[

L′
(

1 − x′
j Xij

h2
j

)

L−j,h(x, Xi )

]

X′
ij ,

Hjj f̂ (x; h) = cd,L(hj )

nh4
j

n∑

i=1

[

L′′
(

1 − x′
j Xij

h2
j

)

L−j,h(x, Xi )

]

Xij X′
ij ,

Hkj f̂ (x; h) = cd,L(hk)cd,L(hj )

nh2
kh

2
j

×
n∑

i=1

[

L′
(

1 − x′
kXik

h2
k

)

L′
(

1 − x′
j Xij

h2
j

)

L−k,−j,h(x, Xi )

]

× XikX′
ij ,



68 E. García-Portugués and A. Meilán-Vila

where .x ∈ (Sd)r and 139

.L−j,h(x, y) := cd−j ,L(h−j )L
(
(1 − x′−j � y−j ) � h�(−2)

−j

)
,

L−k,−j,h(x, y) := cd−k,−j ,L(h−k,−j )L
(
(1 − x′−k,−j � y−k,−j ) � h�(−2)

−k,−j

)
.

For the vMF kernel, the above gradient and Hessian expressions simplify to 140

.∇j f̂ (x; h) = 1

nh2
j

n∑

i=1

Lh(x, Xi )X′
ij , Hkj f̂ (x) = 1

nh2
kh

2
j

n∑

i=1

Lh(x, Xi )XikX′
ij ,

which can be further compressed into 141

.∇f̂ (x; h) = h�(−2) �
[

1

n

n∑

i=1

Lh(x, Xi )X′
i

]

, . (4.5)

Hf̂ (x; h) = (hh′)�(−2) �
[

1

n

n∑

i=1

Lh(x, Xi )(Xi � X′
i )

]

. (4.6)

The simplicity of (4.5)–(4.6) is a major practical benefit of the vMF kernel. 142

Therefore, this kernel is adopted henceforth, although the subsequent theory also 143

holds for other kernels. 144

4.2.1.3 Polysphere-on-Scalar Regression Estimation 145

The indexing of density ridges benefits from an auxiliary smoothing of .(Sd)r -valued 146

data with respect to a scalar variable. This smoothing can be cast within a regression 147

framework where one is interested in estimating the extrinsic regression function .t ∈ 148

R 
→ m(t) := proj(Sd )r (E[X|T = t]) given the iid sample .(T1, X1), . . . , (Tn, Xn) 149

on .R × (Sd)r . An alternative intrinsic approach based on the conditional Fréchet 150

mean is also possible, yet it would involve several issues (non-explicitness, non- 151

uniqueness, and potential smeariness; see [16] on the latter). 152

Within this extrinsic regression setup, given .t ∈ R, we consider the Nadaraya– 153

Watson estimator 154

.m̂(t;h) := proj(Sd )r

(
n∑

i=1

Wi(t;h)Xi

)

, Wi(t;h) := Kh(t − Ti)
∑n

j=1 Kh(t − Tj )
,

(4.7)

which acts as a weighted local mean informed by the scaled kernel .Kh(·) = 155

K(·/h)/h (typically, a Gaussian pdf) and the bandwidth .h > 0. Bandwidth 156
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selection for (4.7) can be approached by cross-validation: 157

.ĥCV := arg min
h>0

CV(h), CV(h) := 1

n

n∑

i=1

d(Sd )r

(
Xi , m̂−i (Ti;h)

)2
, (4.8)

where .m̂−i (·;h) denotes (4.7) computed without the ith observation and prevents a 158

spurious overfitting. In (4.8), .d(Sd )r stands for the geodesic distance on the product 159

manifold .(Sd)r , which arises from the Euclidean combination of geodesic distances 160

on .S
d (see, e.g., [13, p. 600]): 161

.d(Sd )r (x, y) =
⎛

⎝
r∑

j=1

[
cos−1(x′

j yj )
]2

⎞

⎠

1/2

. (4.9)

The cross-validated bandwidth (4.8) can be smoothed according to the one-standard 162

error rule principle from the glmnet package [17]. The rule favors regression 163

simplicity within a one-standard error neighborhood of .CV(ĥCV), that is .ĥ1SE := 164

max
{
h > 0 : CV(h) = CV(ĥCV) + ŜE(CV(ĥCV))

}
, where .ŜE

2
(CV(h)) := 165

1
n−1

∑n
i=1(CVi (h) − CV(h))2 and .CVi (h) := d(Sd )r

(
Xi , m̂−i (Ti;h)

)2. 166

A faster and equivalent expression for .CV(h) in (4.8) is given in the following 167

result. For a sample size .n = 200, the median computation time of evaluating 168

.CV(h) as described in Proposition 2 is approximately just .8.6% of that of the naive 169

form (4.8). 170

Proposition 2 Let .K̃ and .W̃ be .n × n matrices with ij -entries .kij := 171

(1 − δij )Kh(Ti − Tj ) and .wij := kij /(
∑n

j=1 kij ), respectively, where .δij 172

denotes Kronecker’s delta and .i, j = 1, . . . , n. Let .X̃ := W̃X, where .X 173

is the .n × (r(d + 1)) response matrix whose rows are .X′
1, . . . , X′

n. Then 174

.CV(h) = ∑n
i=1 d(Sd )r

(
Xi , proj(Sd )r (X̃i )

)2
, where .X̃′

i is the ith row of .X̃. 175

A more sophisticated local polynomial estimator could be considered instead 176

of (4.7), yet with higher computational cost and higher variability at low-density 177

regions. 178

4.2.2 Density Ridges 179

4.2.2.1 Population Euclidean Case 180

Density ridges are higher-dimensional extensions of the concept of mode that inform 181

on the main features of a density f on .R
p. Density ridges are defined through 182

the gradient and Hessian of f . In particular, they require the eigendecomposition 183

.Hf (x) = U(x)�(x)U(x)′, for .x ∈ R
p, where .U(x) = (u1(x), . . . , up(x)) 184

is a matrix whose columns are the eigenvectors and .�(x) = diag(λ1(x), . . . , 185
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λp(x)), .λ1(x) ≥ . . . ≥ λp(x), contains the corresponding eigenvalues. Denoting 186

.U(p−1)(x) := (u2(x), . . . , up(x)), the projected gradient onto .{u2(x), . . . , up(x)} is 187

.∇(p−1)f (x) := ∇f (x)U(p−1)(x)U(p−1)(x)′. (4.10)

The density ridge of f is defined by [15] as the set 188

.R(f ) := {
x ∈ R

p : ‖∇(p−1)f (x)′‖ = 0, λ2(x), . . . , λp(x) < 0
}
. (4.11)

Note that .x ∈ R(f ) if either .x is a maximum or a saddle point, or .∇f (x)′ is parallel 189

to .u1(x), i.e., the directions of maximum ascent and largest (signed) curvature 190

coincide. 191

To determine .R(f ) in practice, assuming that f is a known density on .R
p, an 192

iterative Euler algorithm that starts at an arbitrary point .x0 ∈ R
p and converges to a 193

certain point in .R(f ) is often used. The algorithm is based on the updating 194

.xt+1 = xt + H η(p−1)(xt )
′ (4.12)

until convergence, using a step matrix .H and the normalized projected gradient 195

.η(p−1)(x) := ∇(p−1)f (x)/f (x). (4.13)

The gradient (4.13) boosts the passing through low-density regions and modulates 196

its magnitude at high-density regions. 197

We refer to [15] and [18, Section 6.3] for further details on the population case 198

and for the exposition of the sample version. For the sake of brevity, we directly 199

address next the sample polyspherical case. 200

4.2.2.2 Sample Polyspherical Case 201

We turn on back to the setting in the present work: a density f supported over 202

.(Sd)r ⊂ R
p, with .p = r(d + 1) henceforth, that is unknown. The recipe for 203

estimating density ridges from a sample .X1, . . . , Xn on .(Sd)r rests on two main 204

adaptations: (i) plug-in the kde .f̂ (·; h) instead of f in (4.10), (4.11), and (4.13); (ii) 205

conform to the polysphere .(Sd)r the Euler step given in (4.12). 206

The projected gradient of .f̂ (·; h) involves the extended gradient .∇ ¯̂
f (·; h) and 207

Hessian .H ¯̂
f (·; h) obtained in Proposition 1. However, some care is needed, as the 208

direct translation of (4.10) to .(Sd)r leads to three important issues. First, repeatedly 209

computing the full eigendecomposition .H ¯̂
f (x; h) = Û(x; h)�̂(x; h)Û(x; h)′ for 210

.x ∈ (Sd)r is expensive, especially for large p. However, due to orthogonality, 211

.Û(p−1)(x; h)Û(p−1)(x; h)′ = Ip − û1(x; h)û1(x; h)′, and this expression has 212

the advantage of involving only the first eigenvector .û1(x; h) and not the full 213

eigendecomposition. The computation of the first eigenvector, or a set of prescribed 214
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eigenvectors, can be done efficiently with the implicitly restarted Arnoldi algorithm 215

in ARPACK [19], ported in Armadillo’s eigs_sym [20]. Second, as advanced in 216

Remark 1, the Hessian .H ¯̂
f (x; h) has a component that is non-orthogonal to .x and 217

that corresponds to the terms (4.4) in the r diagonal blocks. Due to the specificity 218

of .(Sd)r , this component has to be subtracted before the gradient projection: if 219

included, .Ip − û1(x; h)û1(x; h)′ would be projecting the gradient .∇ ¯̂
f (x; h) partly 220

along .x, that is, outside the tangent space at .x, spanned by .Ip−diag(x1x′
1, . . . , xrx′

r ), 221

where .∇ ¯̂
f (x; h) lies. We denote by .H̃ ¯̂

f (x; h) the Hessian matrix projected on the 222

orthogonal space to .x that does not include the terms (4.4) in each of the r diagonal 223

blocks of .H ¯̂
f (x; h). Third, .H̃ ¯̂

f (x; h) has r null eigenvalues, which is apparent given 224

the mismatch between p and dr , the intrinsic dimension of .(Sd)r . If they are not 225

specifically filtered out, null eigenvalues in the form of machine epsilons may arise 226

in the r largest (signed) eigenvalues. 227

Taking into account the three previous issues, we denote with .ũ1(x; h) the 228

eigenvector associated with the largest (signed) non-null eigenvalue of .H̃ ¯̂
f (x; h). 229

Then, we define the kde analog of the projected gradient (4.10) as 230

.∇(p−1)
¯̂

f (x; h) := ∇ ¯̂
f (x; h)

(
Ip − ũ1(x; h)ũ1(x; h)′

)
. (4.14)

The kde-normalized projected gradient is then defined as 231

.η̂(p−1)(x; h) := ∇(p−1)
¯̂

f (x; h)/f̂ (x; h). (4.15)

The Euler step (4.12) transforms into 232

.xt+1 := proj(Sd )r

(
xt + h�2 � η̂(p−1)(xt ; h)′

)
. (4.16)

In (4.16), .proj(Sd )r preserves each new iteration within .(Sd)r and .h�2 � 233

η̂(p−1)(xt ; h)′ = (
h2

1η̂1,(p−1)(xt ; h), . . . , h2
r η̂r,(p−1)(xt ; h)

)′ multiplies the j th 234

projected gradient according to the corresponding squared bandwidth. Squares 235

appear as an analogy to the Euclidean case (4.12), where .H, not .H1/2, is considered 236

to modulate the Euler step [18, Section 6.3]. The recurrence (4.16) is iterated until 237

convergence, when .xt+1 approximately belongs to the sample version of the ridge: 238

.R
(
f̂ (·; h)

) := {
x ∈ (Sd)r : ‖∇(p−1)

¯̂
f (·; h)(x)′‖ = 0, λ̃2(x; h), . . . , λ̃dr (x; h) < 0

}
,

being .λ̃2(x; h) > . . . > λ̃dr (x; h) the non-null eigenvalues of .H̃ ¯̂
f (x; h). 239

Computing the gradient and Hessian behind (4.14) in high-dimensional setups 240

has to be done carefully, as their entries quickly underflow. Thanks to (4.5) and (4.6), 241

this issue can be prevented by (i) working in logarithmic scale and (ii) computing 242

rather the gradient and Hessian standardized by the kde (4.1). Obviously, dividing by 243
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.f̂ (x; h) does not affect the eigenvectors of .H̃ ¯̂
f (x; h), yet it makes them numerically 244

stable. 245

To guide the discussion of the specifics in the proposed density ridge estimation 246

procedure on .(Sd)r , we summarize in Algorithm 1 its main steps. 247

Algorithm 1 Ridge estimation and indexing on .(Sd)r

Given a sample .X1, . . . , Xn on .(Sd )r , its estimated ridge is determined and indexed as follows:

1. Select a “suitable” data-driven bandwidth .ĥ (Sect. 4.2.2.3).
2. For each element in an initial grid .{x0,1, . . . , x0,m} ⊂ (Sd )r , iterate (4.16) “until convergence”

to a given .xj , .j = 1, . . . , m (Sect. 4.2.2.4).

3. “Index” the estimated ridge .R̂
(
f̂
(·; ĥ

)) := {x1, . . . , xm} ⊂ (Sd )r and assign “scores” to
.X1, . . . , Xn (Sect. 4.2.2.5).

4.2.2.3 Bandwidth Selection 248

Bandwidth selection in Step 1 can be done with “upscaled versions” of plug-in 249

bandwidths. [21] proposed a simple plug-in bandwidth selector for the kde (4.1) on 250

.S
d . This estimator is an analog to Silverman’s rule-of-thumb [22], as it assumes that 251

the underlying population is a vMF distribution with concentration .κ to estimate the 252

curvature term present in the so-called Asymptotic Mean Integrated Squared Error 253

(AMISE) bandwidth. Within the setting of the present work, the marginal bandwidth 254

selector in the j th .S
d is 255

.ĥj,ROT :=
⎡

⎣
4π1/2I(d−1)/2(κ̂j )

2

κ̂
(d+1)/2
j

[
2dI(d+1)/2(2κ̂j ) + (2 + d)κ̂jI(d+3)/2(2κ̂j )

]
n

⎤

⎦

1/(4+d)

,

(4.17)

where .κ̂j := A−1
d (‖ 1

n

∑n
i=1 Xij‖), with .Ad(r) := I(d+1)/2(r)/I(d−1)/2(r), is 256

the maximum likelihood estimate of .κj . Independently combining the marginal 257

bandwidth selectors (4.17) gives .ĥIROT := (
ĥ1,ROT, . . . , ĥr,ROT

)′ ∈ R
r+. This 258

admittedly simple selector is explicit and easy to compute, but it undersmooths 259

the underlying density in .(Sd)r . Besides, following the discussion in [18, Section 260

6.3], the kind of bandwidth selectors recommended for density ridge estimation are 261

the ones designed for Hessian density estimation, since (4.15) critically depends 262

on adequately estimating the Hessian’s first eigenvector. To solve both issues in a 263

computationally tractable manner, given the current lack of theory for derivative 264

bandwidth selectors on .(Sd)r , we consider the following upscaled version of .ĥIROT: 265

.ĥ(s)
UIROT := ĥIROT × n1/(d+4)−1/(dr+2s+4),
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where s denotes the order of the derivatives of f that are being estimated. The 266

entries of .ĥ(s)
UIROT have order .O

(
n−1/(dr+2s+4)

)
, i.e., the standard rate an AMISE 267

bandwidth for the sth derivatives of a pdf on .R
dr has [18, Section 5.5]. We will 268

consider .C × ĥ(2)
UIROT in Step 1, where .C > 0 is determined experimentally. 269

4.2.2.4 Euler Iteration 270

An important practical issue is to initiate (4.16) in Step 2 from a sensible grid 271

of points .{x0,1, . . . , x0,m} ⊂ (Sd)r . This can be challenging in .(Sd)r due to two 272

reasons: (i) the likely vastness of the domain, which forbids considering a product of 273

uniform-like grids on each .S
d (besides, such uniform grids are unknown for .d > 1); 274

(ii) the ubiquitous low-density regions, with associated long convergence paths to 275

ridge points that are usually spurious. Solutions to both problems include setting the 276

initial grid by sampling from .f̂
(·; ĥ

)
or by directly using the sample .X1, . . . , Xn, 277

thus building data-driven grids across .(Sd)r adapted to the purpose of Algorithm 1. 278

In practice, the iteration of the recurrence (4.16) can be done for a maximum 279

number of iterations N or until a certain stopping .ε-criterion on the standardized 280

version of distance (4.9) is met: .(d(Sd )r (xt+1, xt )/(π
√

r)) < ε. The standardization 281

allows securing the same accuracy within different polyspheres. In our experiments, 282

we found that .N = 1000 and .ε = 10−5 gave a good accuracy–speed trade-off. 283

When applying Step 2 on a high-dimensional space .(Sd)r , we have found that 284

a convenient way to speed up and monitor the obtention of the ridge on .(Sd)r is 285

to initialize the (expensive) Euler algorithm with the endpoints of (much faster) 286

marginal Euler algorithms on each of the .r/k blocks formed by .(Sd)k . This process 287

can be refined by using .	 passes forming the sequence .1 ≤ k1 < . . . < k	 = r . 288

Finally, in practice Step 2 is followed by a filtering process that removes spurious 289

endpoints .xj meeting any of the next conditions: (i) .ε-convergence was not achieved 290

in N iterations; (ii) .λ̃2(xj ; ĥ) ≥ 0; (iii) .f̂ (xj ; ĥ) < f̂α , where .f̂α is the .α-quantile 291

of .f̂ (X1; ĥ), . . . , f̂ (Xn; ĥ) for, say, .α = 0.01 (i.e., .xj is in a low-density region). 292

4.2.2.5 Indexing Ridges 293

The estimated ridge .R̂
(
f̂
(·; ĥ

)) = {x1, . . . , xm} ⊂ (Sd)r obtained in Step 2 is a 294

set of points without an explicit notion of order. To build a flexible analog of a first 295

principal component, an indexing of .R̂
(
f̂
(·; ĥ

))
is essential. Inspired by the use of 296

MultiDimensional Scaling (MDS) in [23] for non-Euclidean dimension-reduction 297

purposes, we advocate the use of a metric MDS (see, e.g., Section 9.1 in [24]) on 298

the matrix of geodesic distances .D := (d(Sd )r (xi , xj )), with .1 ≤ i, j ≤ m. Metric 299

MDS from .(Sd)r to .R produces 300
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.(t̂1, . . . , t̂m) = arg min
t1,...,tm∈R

m∑

i,j=1

(
d(Sd )r (xi , xj ) − |ti − tj |

)2
. (4.18)

The indexes .t̂1, . . . , t̂m give an effective handle to traverse .R̂
(
f̂
(·; ĥ

))
. Optimization 301

of (4.18) can be done with the smacof package [25]. 302

The smoother (4.7) becomes now relevant to (i) smooth out irregularities in the 303

estimated ridge and, more importantly, (ii) evaluate the ridge at arbitrary indexes 304

beyond those in (4.18). Consequently, we define the Smoothed–Indexed–Estimated 305

Ridge (SIER) as the curve .t ∈ R 
→ r̂(t;h) ∈ (Sd)r generated by (4.7) acting on 306

the sample .(t̂1, x1), . . . , (t̂m, xm). .R̂
(
f̂
(·; ĥ

))
neither contains nor is contained by 307

.{r̂(t;h) : t ∈ R}, yet the latter can be regarded as the estimated mean of the former. 308

The score of an arbitrary point .x ∈ (Sd)r on the SIER is defined as the index of 309

its projection on the SIER curve: 310

.scorer̂(·;h)(x) := arg min
t∈R d(Sd )r

(
r̂(t;h), x

)
. (4.19)

Note that .xj , the “Euler-projection” of .xj,0, and the projection .projr̂(;h)(xj,0) := 311

r̂
(
scorer̂(·;h)(xj,0);h

)
can be very different since the Euler paths follow the projected 312

gradient flow and not the geodesic to the closest point on the ridge. This difference 313

is clearly illustrated in Fig. 4.1, where the Euler-projections introduce distortions in 314

the color gradient of the triangles (e.g., longest blue and green paths), which are not 315

present in the sample scores .{scorer̂(·;h)(Xi )}ni=1 shown in the rug of the right plot. 316

4.3 Results 317

4.3.1 An Illustrative Numerical Example 318

We demonstrate the performance of Algorithm 1 for dimension-reduction with a 319

numerical example on .(S2)2. The left and central panels of Fig. 4.1 display a sample 320

of size .n = 200 in solid points. The dependence pattern on each .S
2 follows a small 321

circle variation that is coupled between .S
2’s and that is indicated by a common 322

rainbow palette; i.e., points with the same colors in the two panels represent the 323

.S
2-coordinates of a single point on .(S2)2. The Euler paths arising from running 324

Algorithm 1 taking the sample as the initial grid are shown in transparent color. 325

These paths converge to the triangular points defining .R̂
(
f̂
(·; ĥ

))
. The SIER, shown 326

in the black curves, is then obtained with .C = 2 and .ĥ1SE (Sect. 4.2.1.3) for (4.7). 327

The right panel of Fig. 4.1 shows the scores of the sample points on the SIER, 328

evidencing that the color gradient encoding the one-dimensional mode of variation 329

of the data is recovered (rainbow rug). Indeed, the Spearman correlation between 330

the order of the colors and the order of the sample scores is .0.9999. 331
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Fig. 4.1 Numerical example on .(S2)2. The left and central plots display the (joint) main mode of
variation of the data, encoded by a common rainbow color palette. The sample is shown in solid
points, the Euler paths in transparent curves, and the ridge points in triangles. The black curves
represent the two .S2-views of the common SIER. The right plot shows the kde of the sample
scores

4.3.2 Main Mode of Variation of Hippocampus Shapes 332

We analyze now the hippocampi dataset mentioned in Sect. 4.1. The data consists 333

of .n = 177 hippocampi parametrized using s-reps, where each of the subjects has 334

.r = 168 spokes. The s-reps were fitted to a set of binary images of the hippocampi 335

that were segmented from magnetic resonance imaging [3]. Fixing the radii of these 336

vectors to their sample means, hence taking into account only the shape of the 337

hippocampus and not its size, each s-rep is reduced to a value on .(S2)r . 338

A main form of variation is not well-defined in densities that are rotationally 339

symmetric and unimodal about a certain location, as it distinctively happens with 340

the vMF distribution. To detect such cases delivering spurious ridges, we run in 341

each of the .r = 168 samples of spokes the hybrid test for rotational symmetry with 342

unspecified location from [26], implemented in rotasym [27]. To control for false 343

discoveries, we corrected the r resulting p-values using the false discovery rate by 344

[28]. For a conservative .1% significance level, .r∗ = 88 non-rotationally symmetric 345

spokes were found, for which we then ran Algorithm 1 on .(S2)r
∗
. Figure 4.2 shows 346

in color the .r∗ non-rotationally symmetric spokes and in gray the .r − r∗ = 89 347

rotationally symmetric spokes. 348

As advanced in Sect. 4.2.2.4, Algorithm 1 was run in a blockwise fashion to 349

facilitate faster convergences. Precisely, .	 = 3 passes were applied to .r∗/kl blocks 350

of sizes .k1 = 1, .k2 = 22, and .k3 = r∗. The initial grid for the first pass was 351

set as the sample, and then subsequent passes were fed with the endpoints of the 352

former pass. After each pass, the spurious endpoints were removed (.α = 0.01) to 353

prevent their propagation into long convergence paths, hence successively trimming 354

the size of the initial grids. The bandwidths applied on each pass were .Cl × ĥ(2)
UIROT 355

(adapted to .(S2)kl ), with .Cl = 2l experimentally determined, for .l = 1, 2, 3. Our 356

implementation of Algorithm 1 based on a hybrid of C.++ (for the core routines) 357

and R (for interfacing) yielded running times of 64, 170, and 3121 s for the three 358
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Fig. 4.2 March along the SIER of hippocampi. From left to right, the three plots show the
reconstructed hippocampi for the score quantiles .1%, .50%, and .99%. In them, .r∗ = 88 non-
rotationally symmetric spokes (colored) vary along the march, while the remaining .r − r∗ = 89
spokes (in gray) remain fixed at their spherical means. The yellow/purple color gradient codifies
the large/small degree of change along the march. The black points are the average inner skeletal
points of the n hippocampi. Surfaces were constructed using alphashape3d [29]

respective blocks. These times were measured on an Apple M1 processor. The fast 359

runs for blockwise fits were convenient for quick exploration of approximate ridges. 360

Finally, the SIER was computed with .ĥ1SE. Replicating code is available from the 361

authors upon reasonable request. 362

Figure 4.2 depicts the main outcome of our dimension-reduction tool on the hip- 363

pocampi dataset: the march along the SIER, instantiated for the sake of conciseness 364

at the quantiles .1%, .50%, and .99% of the sample scores. The coloring indicates 365

that the largest variation appears at the yellow/green spokes (e.g., see spokes 28 366

and 99), with purple indicating virtually no variation, and gray denoting rotationally 367

symmetric spokes. This march shows that: (i) most of the variation is concentrated at 368

the spokes describing the sharpness of the elongated convex edge (right-positioned 369

in the plots), and at the narrowest extreme of the hippocampus form (bottom); (ii) 370

the joint variation of the previous spokes is elucidated as a “synchronous opening 371

of pincers” given by pairs of spokes, i.e., there is a variation gradient from sharper 372

to thicker edges in the hippocampus shapes; (iii) low variation occurs on the normal 373

spokes to the elongated form of the hippocampus; (iv) the concave edge (left) and 374

the widest extreme (top) concentrate most of the rotationally symmetric spokes; (v) 375

on overall, the determined main shape variation across subjects is mild. Figure 4.3 376

shows the .S
2-projections of the .(S2)r

∗
-valued SIER, indicating with a rainbow 377

palette the score-driven march along the SIER for which three quantiles were shown 378

in Fig. 4.2. The density of the scores in Fig. 4.3 points towards an asymmetric 379

distribution of the subjects, with a secondary cluster at the right of the main mode. 380

The scores given by the SIER serve to identify the “median hippocampus 381

shape” and “most extreme hippocampus shape” in a straightforward way, given 382

its univariate nature. Indeed, we define the first as the hippocampus whose score 383

is the median of the scores (.−0.30, see the rightmost plot of Fig. 4.3), while we 384

set the second as that hippocampus with the largest absolute score (.10.33). These 385
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Fig. 4.3 The left and central plots show two views of the same .S2 in which (i) each of the .n = 177
directions of the .r∗ = 88 spokes has been drawn (colored points) and (ii) the .r∗ .S2-projections
of the .(S2)r

∗
-valued SIER are jointly plotted. The yellow/purple color gradient of the directions is

assigned according to the spoke to which they belong. The rainbow palette is common to the .r∗
SIER .S2-projections and is determined from the order of the sample scores (right plot)

Fig. 4.4 Hippocampus shapes corresponding to the most extreme (left) and median (right)
hippocampus. The first corresponds to the hippocampus with the largest absolute score, while
the second is the hippocampus whose score is the median of the sample scores (see Fig. 4.3)

particular hippocampi are depicted in Fig. 4.4. The medial hippocampus is highly 386

symmetric and has a small curvature along its elongated direction. The most extreme 387

hippocampus (left plot) is a vertically-squeezed hippocampus that is notably thick, 388

especially in the upper part displayed in Fig. 4.4. Indeed, the height ratio between the 389

upper and lower parts is unusually high (not visible in Fig. 4.4). In opposition to the 390

medial hippocampus, its elongated convex edge is markedly curved and asymmetric. 391

4.4 Discussion 392

A new fully nonparametric dimension-reduction procedure for finding the main 393

mode of variability of the shape of s-reps was introduced in this chapter. The tech- 394
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nique targets the polyspherical reduction of s-reps and provides a complete pipeline 395

for attaining an analog of the first principal component on .(Sd)r based on density 396

ridges. As demonstrated with the hippocampi dataset, the tool can be used for 397

flexible dimension-reduction analyses in medical applications involving s-reps, also 398

in high-dimensional settings, that deliver useful visualizations and insights. 399

The proposed technique presents some limitations and is subject to future 400

improvements. As in any kernel-based method, bandwidth selection is a crucial 401

issue. In that regard, the upscaled marginal bandwidths are simple choices open 402

to large enhancements with the development of a theory for density derivative 403

estimation on .(Sd)r , for example, in the direction of cross-validatory or plug-in 404

methods. From an application standpoint, the presented analysis also has certain 405

limitations that constitute opportunities for further research. Arguably, the most 406

relevant improvement would be a more holistic approach to determining the main 407

mode of variation of the hippocampi involving the radii of the spokes and the 408

position of the inner skeletal, as well as their interactions with the directions of the 409

spokes. Addressing this case in a fully nonparametric way would involve substantial 410

further complexities in the definition and estimation of the involved density ridges, 411

caused by the notable increment of dimension and the different nature of the 412

components involved. 413

The presented methodology, ultimately instantiated with the SIER march and 414

scores, has medical potential in regard to analyzing the shapes of hippocampi 415

and other three-dimensional objects parametrized by s-reps. On the one hand, it 416

delivers a rich exploratory data analysis of the morphology of these objects, either 417

through the SIER march or through the sample scores. The univariate scores, in 418

particular, allow investigating the existence of possible clusters, determining the 419

most prototypical subjects, and outlier-hunting signaling abnormal shapes. On the 420

other hand, the methodology can be applied to obtain effective comparisons between 421

treatment and control groups, either through the SIER march (visual, qualitative) or 422

through the metrics on the distribution of the sample scores (quantitative). 423
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Proofs 429

Proof (Proposition 1) For x̄ = (x′
1/‖x1‖, . . . , x′

r/‖xr‖)′ =: (x̄′
1, . . . , x̄′

r )
′ ∈ (Sd)r , 430

.
∂ x̄j

∂xij

= ‖xj‖−3
(
‖xj‖2ei − xij xj

)
and

∂ x̄j

∂xik

= 0,
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where ei is the ith canonical vector of Rd+1, i = 1, . . . , d + 1, and j, k = 1, . . . , r , 431

j �= k. It now follows that, for x ∈ (Rd+1)r , 432

.
∂

∂xij

f (x̄) = ‖xj‖−3∇j f (x̄)
(
‖xj‖2ei − xij xj

)
, j = 1, . . . , r, i = 1, . . . , d + 1.

Hence, for x ∈ (Sd)r , 433

.∇j f̄ (x) = ∇j f (x)(Id+1 − xj x′
j ), j = 1, . . . , r.

To obtain the Hessian of f̄ , we first compute the entries of Hjj f̄ (x) for x ∈ 434

(Rd+1)r and j = 1, . . . , r: 435

.
∂2

∂xpj ∂xqj

f̄ (x)

= ∂

∂xpj

(

‖xj‖−1 ∂

∂xqj

f (x̄) − ‖xj‖−3
d+1∑

l=1

∂

∂xlj

f (x̄)xlj xqj

)

=
(

∂

∂xpj

‖xj‖−1
)

∂

∂xqj

f (x̄) + ‖xj‖−1 ∂

∂xpj

(
∂

∂xqj

f (x̄)

)

−
(

∂

∂xpj

‖xj‖−3
) d+1∑

l=1

∂

∂xlj

f (x̄)xlj xqj

− ‖xj‖−3
d+1∑

l=1

[
∂

∂xpj

(
∂

∂xlj

f (x̄)

)

xlj xqj + ∂

∂xlj

f (x̄)
∂

∂xpj

(xlj xqj )

]

= ‖xj‖−3
{

− xpj

∂

∂xqj

f (x̄) − xqj

∂

∂xpj

f (x̄)

+
(

3‖xj‖−2xpjxqj − δpq

) d+1∑

l=1

xlj

∂

∂xlj

f (x̄) + ‖xj‖ ∂2

∂xpj ∂xqj

f (x̄)

− ‖xj‖−1

(

xpj

d+1∑

s=1

xsj

∂2

∂xsj ∂xqj

f (x̄) + xqj

d+1∑

l=1

xlj

∂2

∂xpj ∂xlj

f (x̄)

)

+ xpjxqj

d+1∑

l=1

d+1∑

s=1

xsj xlj

∂2

∂xsj ∂xlj

f (x̄)

}

= ‖xj‖−3
{

− e′
pxj∇f (x̄)′eq − e′

p∇f (x̄)x′
j eq

+ e′
p

(
3‖xj‖−2xj x′

j − Id+1
)
eqx′

j∇f (x̄) + ‖xj‖e′
pHjj f (x̄)eq
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− ‖xj‖−1(e′
pxj x′

jHjj f (x̄)eq + e′
pHjj f (x̄)xj x′

j eq

)

+ e′
pxj x′

j eqx′
jHjj f (x̄)xj

}
, (4.20)

with p, q = 1, . . . , d + 1. Collecting the entries in (4.20) into Hjj f̄ (x), it follows 436

that, for x ∈ (Sd)r , 437

.Hjj f̄ (x) = − xj∇j f (x) − ∇j f (x)′x′
j + (3xj x′

j − Id+1)(∇j f (x)xj )

+Hjj f (x) − (xj x′
jHjj f (x) +Hjj f (x)xj x′

j ) + xj x′
j (x

′
jHjj f (x)xj )

= (Id+1 − xj x′
j )Hjj f (x)(Id+1 − xj x′

j )

− (∇j f (x)xj )(Id+1 − xj x′
j ) − A, (4.21)

where A := [
xj∇j f (x)+(xj∇j f (x))′ −2(∇j f (x)xj )xj x′

j

]
is a symmetric matrix 438

that, differently from the other terms in (4.21), is non-orthogonal to xj x′
j : 439

.A(xj x′
j ) = (xj∇j f (x))′ − (∇j f (x)xj )xj x′

j ,

despite being easy to check that (xj x′
j )A(xj x′

j ) = (Id+1 − xj x′
j )A(Id+1 − xj x′

j ) 440

= 0. 441

In addition, for k, j = 1, . . . , r , k �= j , and p, q = 1, . . . , d + 1, 442

.
∂2

∂xpk∂xqj

f̄ (x)

= ‖xj‖−1 ∂

∂xpk

(
∂

∂xqj

f (x̄)

)

− ‖xj‖−3
d+1∑

l=1

[
∂

∂xpk

(
∂

∂xlj

f (x̄)

)

xlj xqj

]

= ‖xj‖−1‖xk‖−1
{

∂2

∂xpk∂xqj

f (x̄)

− ‖xk‖−2xpk

d+1∑

s=1

∂2

∂xsk∂xqj

f (x̄)xsk − ‖xj‖−2xqj

d+1∑

l=1

∂2

∂xpk∂xlj

f (x̄)xlj

− ‖xj‖−2‖xk‖−2xpkxqj

d+1∑

l=1

d+1∑

s=1

xskxlj

∂2

∂xsk∂xlj

f (x̄)

}

= ‖xj‖−1‖xk‖−1
{

e′
pHkj f (x̄)eq

− ‖xk‖−2e′
pxkx′

kHkj f (x̄)eq − ‖xj‖−2e′
pHkj f (x̄)xj x′

j eq

+ ‖xj‖−2‖xk‖−2e′
pxj x′

keqx′
kHkj f (x̄)xj

}
.
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By an analogous collection of terms to that in (4.21), for x ∈ (Sd)r , Hkj f̄ (x) =
(Id+1 − xkx′

k)Hkj f (x)(Id+1 − xj x′
j ). ��

Proof (Proposition 2) The proof follows after recalling that the unprojected esti-
mator m̃(t;h) := ∑n

j=1 Wj(t;h)Xi satisfies m̃−i (t;h) = ∑n
j=1, j �=i W−i,j (t;h)Xj

with W−i,j (t;h) = Wj(t;h)/(1−Wi(t;h)) since
∑n

i=1 Wi(t;h) = 1, for all t ∈ R.
��
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