

A 10 minute-ish introduction to linear regression

Eduardo García-Portugués
University of Copenhagen

26th February 2016

Motivating example

- A production line where we measure the time (in minutes) it takes to produce a number items
- Two rv's $Y=$ "time required to produce an order" and $X=$ "number of items in the order"
- A dataset like this

X	Y
195	175
215	189
243	344

- We are interested in describing the relation between Y (response, dependent variable) and X (predictor, independent) and predict Y from X

Simple linear regression

- The conditional expectation of Y given $X=x$ can be seen as a function, called the regression function

$$
m(x):=\mathbb{E}[Y \mid X=x]=\int y f_{Y \mid X}(y \mid x) \mathrm{d} y=\int y \frac{f_{X Y}(x, y)}{f_{X}(x)} \mathrm{d} y
$$

- We can always write $Y=m(X)+\varepsilon$, with ε (error, noise) st $\mathbb{E}[\varepsilon \mid X]=0$
- Linear regression assumes that m is linear (or at least close to it) for some unknown parameters $\left(\beta_{0}, \beta_{1}\right)$:

$$
m(x)=\beta_{0}+\beta_{1} x
$$

- How to estimate $\left(\beta_{0}, \beta_{1}\right)$ from a sample $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}$?

Figure: Scatterplot of the time required to produce an order (Y) versus the number of items in the order (X). Which of the linear fits is "better"?

Figure: Scatterplot of the time required to produce an order (Y) versus the number of items in the order (X). Which of the linear fits is "better"?

Least squares fitting

- Let's denote $\beta=\binom{\beta_{0}}{\beta_{1}}, \mathbf{X}=\left(\begin{array}{cc}1 & X_{1} \\ \vdots & \vdots \\ 1 & X_{n}\end{array}\right)$ and $\mathbf{Y}=\left(\begin{array}{c}Y_{1} \\ \vdots \\ Y_{n}\end{array}\right)$
- We seek to minimize the residual sum of squares:

$$
\operatorname{RSS}(\beta)=\sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2}=(\mathbf{Y}-\mathbf{X} \beta)^{T}(\mathbf{Y}-\mathbf{X} \beta)
$$

- RSS is a quadratic function in $\boldsymbol{\beta}$, so

$$
\frac{\partial \operatorname{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}=-2 \mathbf{X}^{T}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})=0, \quad \frac{\partial^{2} \operatorname{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{T}}=2 \mathbf{X}^{T} \mathbf{X}>0
$$

- This gives $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}$ (if $\mathbf{X}^{T} \mathbf{X}>0$) as the minimizer of the RSS
- Recall we have not required any statistical assumption for obtaining $\hat{\boldsymbol{\beta}}$

Model assumptions

- We assume the next hypothesis on the linear model $Y=\beta_{0}+\beta_{1} X+\varepsilon$:

A1 Homocedasticity: $\operatorname{Var}[\varepsilon \mid X=x]=\mathbb{E}\left[\varepsilon^{2} \mid X=x\right]=\sigma^{2}$
A2 Normality: the error is normal, $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$
A3 Independence: the rv's $\varepsilon_{i}=Y_{i}-\beta_{0}-\beta_{1} X_{i}, i=1, \ldots, n$ are independent

Figure: Sketch of the linear model assumptions

- Two possible frameworks for the predictor:

A4 Fixed design (assumed): the values of X are deterministic
A5 Random design: both the predictor and the response Y are random

Properties of estimators and prediction

- The Maximum Likelihood Estimator of $\boldsymbol{\beta}$ under A1-A3 coincides with $\hat{\boldsymbol{\beta}}$
- From Fisher's theorem and linear transformation of normals we have:

Theorem

Under A1-A4, $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}$ and $\hat{\sigma}^{2}:=\frac{1}{n-2} \sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$ are unbiased, independent and st

$$
\begin{equation*}
\hat{\boldsymbol{\beta}} \sim \mathcal{N}\left(\boldsymbol{\beta},\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \sigma^{2}\right) \text { and } \hat{\sigma}^{2} \sim \frac{\sigma^{2}}{(n-2)} \chi_{n-2}^{2} \tag{1}
\end{equation*}
$$

- We can compute confidence intervals for β_{j} based on (1)
- This allows the testing of $H_{0}: \beta_{j}=b$ vs $H_{1}: \beta_{j} \neq b$
- Prediction is done by the conditional mean:

Prediction

For a given x_{0}, the corresponding Y_{0} is predicted as $\hat{Y}_{0}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}$

The determination coefficient R^{2}

- Percentage of variability of Y explained by the model

Variability of Y	Sum of squares
Explained by model (signal)	$\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$
Unexplained (noise)	$\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=:$ RSS
Total	$\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=:$ TSS

- $R^{2}:=1-\frac{\text { RSS }}{\text { TSS }}$ is the square of the Pearson correlation coefficient
- If the model assumptions hold, the larger R^{2}, the better fit

Caution!

Validity of linear model \Longleftrightarrow large R^{2}

- The model is valid if the assumptions hold
- The model is useful if, in addition, the R^{2} is large

Implementation

- Code in https://egarpor.shinyapps.io/lin-reg/
- We illustrate the following concepts:
- Least squares estimator
- Significances of coefficients
- Prediction
- Coefficient of determination

