

A 10 minute-ish introduction to linear regression

Eduardo García-Portugués

University of Copenhagen

26th February 2016

Motivating example

- A production line where we measure the time (in minutes) it takes to produce a number items
- Two rv's Y = "time required to produce an order" and X = "number of items in the order"
- A dataset like this

Х	Υ
195	175
215	189
243	344
:	

We are interested in describing the relation between Y (response, dependent variable) and X (predictor, independent) and predict Y from X

2/9

Eduardo García-Portugués

Simple linear regression

The conditional expectation of Y given X = x can be seen as a function, called the regression function

$$m(x) := \mathbb{E}\left[Y|X=x\right] = \int y f_{Y|X}(y|x) \,\mathrm{d}y = \int y \frac{f_{XY}(x,y)}{f_X(x)} \,\mathrm{d}y$$

- ▶ We can always write $Y = m(X) + \varepsilon$, with ε (error, noise) st $\mathbb{E}[\varepsilon|X] = 0$
- Linear regression assumes that *m* is linear (or at least close to it) for some unknown parameters (β₀, β₁):

$$m(x) = \beta_0 + \beta_1 x$$

• How to estimate (β_0, β_1) from a sample $\{(X_i, Y_i)\}_{i=1}^n$?

Figure: Scatterplot of the time required to produce an order (Y) versus the number of items in the order (X). Which of the linear fits is "better"?

Figure: Scatterplot of the time required to produce an order (Y) versus the number of items in the order (X). Which of the linear fits is "better"?

Least squares fitting

► Let's denote
$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$$
, $\mathbf{X} = \begin{pmatrix} 1 & X_1 \\ \vdots & \vdots \\ 1 & X_n \end{pmatrix}$ and $\mathbf{Y} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}$

We seek to minimize the residual sum of squares:

$$\mathsf{RSS}(\beta) = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2 = (\mathbf{Y} - \mathbf{X}\beta)^T (\mathbf{Y} - \mathbf{X}\beta)$$

▶ RSS is a quadratic function in β , so

$$\frac{\partial \mathsf{RSS}(\beta)}{\partial \beta} = -2\mathbf{X}^{\mathsf{T}}(\mathbf{Y} - \mathbf{X}\beta) = 0, \quad \frac{\partial^2 \mathsf{RSS}(\beta)}{\partial \beta \partial \beta^{\mathsf{T}}} = 2\mathbf{X}^{\mathsf{T}}\mathbf{X} > 0$$

► This gives $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y}$ (if $\mathbf{X}^{\mathsf{T}}\mathbf{X} > 0$) as the minimizer of the RSS

• Recall we have not required any statistical assumption for obtaining $\hat{\beta}$

Eduardo García-Portugués

Model assumptions

- We assume the next hypothesis on the linear model $Y = \beta_0 + \beta_1 X + \varepsilon$:
 - A1 Homocedasticity: $\mathbb{V}ar[\varepsilon|X=x] = \mathbb{E}\left[\varepsilon^2|X=x\right] = \sigma^2$
 - A2 Normality: the error is normal, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
 - A3 Independence: the rv's $\varepsilon_i = Y_i \beta_0 \beta_1 X_i$, i = 1, ..., n are independent

Figure: Sketch of the linear model assumptions

- Two possible frameworks for the predictor:
 - A4 Fixed design (assumed): the values of X are deterministic
 - A5 Random design: both the predictor and the response Y are random

Properties of estimators and prediction

- The Maximum Likelihood Estimator of β under A1-A3 coincides with $\hat{\beta}$
- From Fisher's theorem and linear transformation of normals we have:

Theorem

Under A1-A4, $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$ and $\hat{\sigma}^2 := \frac{1}{n-2} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$ are unbiased, independent and st $\hat{\beta} \sim \mathcal{N}(\beta, (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2)$ and $\hat{\sigma}^2 \sim \frac{\sigma^2}{(n-2)} \chi^2_{n-2}$ (1)

- We can compute confidence intervals for β_j based on (1)
- This allows the testing of $H_0: \beta_j = b$ vs $H_1: \beta_j \neq b$
- Prediction is done by the conditional mean:

Prediction

For a given x_0 , the corresponding Y_0 is predicted as $\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$

The determination coefficient R^2

Percentage of variability of Y explained by the model

Variability of Y	Sum of squares
Explained by model (signal)	$\sum_{i=1}^{n} \left(\hat{Y}_i - \bar{Y} \right)^2$
Unexplained (noise)	$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 =: \text{RSS}$
Total	$\sum_{i=1}^{n} \left(Y_i - \bar{Y} \right)^2 =: TSS$

• $R^2 := 1 - \frac{RSS}{TSS}$ is the square of the Pearson correlation coefficient

• If the model assumptions hold, the larger R^2 , the better fit

Caution!

Validity of linear model \iff large R^2

- The model is valid if the assumptions hold
- ▶ The model is **useful** if, *in addition*, the R² is large

Implementation

- Code in https://egarpor.shinyapps.io/lin-reg/
- We illustrate the following concepts:
 - Least squares estimator
 - Significances of coefficients
 - Prediction
 - Coefficient of determination