
Chapter 55
Prediction Regions for Functional-valued
Random Forests

Diego Serrano and Eduardo Garcı́a-Portugués

Abstract We propose prediction regions for Random Forests (RFs) with functional
output. Our approach is based on a metric specification and builds on the notion of
Fréchet regression. It leverages the Out-Of-Bag (OOB) observations naturally gen-
erated during the training of RFs to estimate the uncertainty in the prediction, using
the complete dataset. We outline the assumptions underpinning the construction of
the prediction regions through OOB errors. A numerical experiment with quantile
curves on the response and scalar predictor illustrates the prediction regions and
shows that four types of nominal coverages are honored.

55.1 Introduction

Random Forests (RFs) [1] are a popular nonparametric regression method renowned
for its adaptability and strong predictive power. Although the original formulation of
RFs was designed exclusively for Euclidean data, several authors have generalized
this algorithm for more complex data types. With this goal, Fréchet Random Forests
(FRF) were developed in [5, 4] to extend RFs for metric data by incorporating the
Fréchet mean in the splitting criterion and the aggregation of trees. This method can
be applied to obtain predictions when the response and the predictors are functional
variables, whenever a suitable distance is defined in the corresponding space of
functions F . A common example are Lebesgue spaces over an interval 𝑇 ⊂ R,
defined as 𝐿𝑞 (𝑇) := { 𝑓 : 𝑇 → R :

∫
𝑇
| 𝑓 (𝑡) |𝑞 d𝑡 < ∞}, with the 𝐿𝑞 distance

𝑑𝑞 ( 𝑓 , 𝑔)𝑞 :=
∫
𝑇
| 𝑓 (𝑡) − 𝑔(𝑡) |𝑞 d𝑡. Building on the work in [5], a nonparametric
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locally adaptive kernel generated by random forests was developed in [8], along with
theoretical guarantees for the consistency of the estimator.

Once a RF prediction is obtained, it is important to quantify its uncertainty to
weight prediction statements. However, despite their predictive power, RFs have
historically lacked strong statistical inference tools. This issue was addressed in [9]
by leveraging the Out-Of-Bag (OOB) observations to develop confidence intervals
for Euclidean data. The OOB observations arise naturally in the training of a RF
and are a trustworthy estimate of its predictive performance, bypassing the need of
sample splitting.

The goal of this work is to generalize the ideas from [9] to FDA in order to
develop prediction regions for a RF with functional response. Our prediction regions
are balls centered on the RF predicted function, with a radius given by the 1 − 𝛼
quantile of the empirical distribution of the OOB errors. Both the prediction of
the functional variable and the estimation of the uncertainty are obtained using the
complete dataset, at the cost of fitting a single forest. We show through a numerical
experiment in the Wasserstein space that these prediction regions respect the nominal
coverage rates for four different types of coverage.

The rest of the work is organized as follows: Section 55.2 introduces basic concepts
regarding RFs and their extension for FDA; Section 55.3 defines OOB prediction
regions; and Section 55.4 gives a numerical experiment in the Wasserstein space.

55.2 Random forests and FDA

RFs are an ensemble method based on combining the predictions from multiple
decision trees via bootstrap aggregation. We first introduce decision trees.

55.2.1 Fréchet decision trees with functional response

Let 𝑌 denote a response functional random variable defined in a functional space
(F , 𝑑F) where 𝑑F denotes a distance function in F . Let 𝑿 be a 𝑝-dimensional
random vector in [0, 1] 𝑝 acting as the predictor (see the end of this subsection
for a note on the extension to metric-valued predictor). Consider a sample L𝑛 :=
{(𝑿𝑖 , 𝑌𝑖)}𝑛𝑖=1 ⊂ [0, 1]

𝑝 × F with multivariate predictors and functional response.
The application of RFs to functional data is achieved by adapting the prediction of
results after the tree is grown. This requires the generalization of the mean to spaces
where no inner product structure is defined (for example, 𝐿𝑞 spaces with 𝑞 ≠ 2).
Fréchet [6] defined the Fréchet mean 𝑦⊕ as the following extension of the mean to
metric spaces:

𝑦⊕ := arg min
𝑦∈F

E
(
𝑑F (𝑌, 𝑦)2

)
.

The Fréchet mean is based on the mean-squared error minimization property of
the mean in Euclidean spaces. The Fréchet mean may not necessarily exist nor be
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unique. Similarly, the classical regression model for Euclidean data is generalized in
[7] to Fréchet regression, through the conditional Fréchet mean

𝑚(𝒙) := arg min
𝑦∈F

E
(
𝑑F (𝑌, 𝑦)2 | 𝑿 = 𝒙

)
. (55.1)

For Euclidean responses, 𝑚(𝒙) = E(𝑌 | 𝑿 = 𝒙).
For multivariate predictors, given a node 𝐴 ⊂ L𝑛, a split variable index 𝑗 ∈

{1, . . . , 𝑝}, and a threshold value 𝑐 𝑗 , the left and right child nodes are defined,
respectively, as

𝐴 𝑗 ,ℓ :=
{
(𝑿𝑖 , 𝑌𝑖) ∈ 𝐴 : 𝑋𝑖 𝑗 ≤ 𝑐 𝑗

}
and 𝐴 𝑗 ,𝑟 :=

{
(𝑿𝑖 , 𝑌𝑖) ∈ 𝐴 : 𝑿𝑖 𝑗 > 𝑐 𝑗

}
.

The standard way of measuring the quality of a split is the Classification And
Regression Trees (CART) criterion [2]. For each split variable 𝑋 𝑗 , the best threshold
𝑐 𝑗 is selected over the observed values of 𝑋𝑖 𝑗 , 𝑖 = 1, . . . , 𝑛, as the maximizer of the
variance decrease in the response due to the split. The optimal split for node 𝐴 is the
value that maximizes the variance decrease among the 𝑝 selected thresholds. Once
the tree is built, the prediction of a new observation 𝒙 is calculated as the Fréchet
mean of the responses from the training set contained in the terminal node of 𝒙.

The regression setting can be extended to cases in which the predictors lie on a
metric space (in particular, functional spaces). For that, the RF splitting criterion can
be generalized using the 2-means algorithm as a split function, and assigning each
datum to the closest of the two obtained centroids. The CART criterion is adapted
for metric predictors by replacing the sample variance with an empirical version of
the Fréchet variance, which is defined as the expected squared distance from the
Fréchet mean (see [4]). For easiness in the exposition, we keep restricting to the case
where the predictor is multivariate and bounded (as in [8]).

55.2.2 Random forests with functional response

The aggregation of predictions of the training responses through the Fréchet mean
used in Fréchet trees can be used to build FRFs through the aggregation of multiple
tree predictions [5]. Every forest is comprised of a fixed number 𝐵 ∈ N of trees,
each trained with a random resample L∗𝑏𝑛 of L𝑛, 𝑏 = 1, . . . , 𝐵. The absence of a
theoretical analysis of the consistency of FRFs in [5, 4] motivated the development
of a locally adaptive kernel generated by random forests with theoretical guarantees
in [8]. This estimator of (55.1) is

𝑚𝑛 (𝒙) := arg min
𝑦∈F

𝑛∑︁
𝑖=1

𝜔𝑖 (𝒙)𝑑F (𝑌𝑖 , 𝑦)2, (55.2)

where the weights 𝜔𝑖 (𝒙) are generated during the Fréchet tree-building procedure.
Specifically, for a given value of the predictors 𝒙 ∈ [0, 1] 𝑝 , the prediction of the 𝑏th
tree provides a sequence of weights 𝜔𝑏

𝑖
(𝒙, 𝜽𝑏) := |𝜏𝑏𝒙 |−11{ (𝒙𝑖 ,𝑦𝑖 ) ∈𝜏𝑏𝒙 } , where |𝜏𝑏𝒙 |
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denotes the number of elements in the corresponding terminal node, 𝑏 = 1, . . . , 𝐵.
Here, 𝜽𝑏 represents the randomization parameter vector that governs the growth of
the 𝑏th tree, determining which variables are considered for each split. The weights
computed with the individual trees are then averaged to obtain a single weight 𝜔𝑖 (𝒙)
for the 𝑖th sample observation, 𝜔𝑖 (𝒙) := 𝐵−1 ∑𝐵

𝑏=1 𝜔
𝑏
𝑖
(𝒙, 𝜽𝑏).

55.2.3 Out-of-bag errors

For a given tree built with a resample L∗𝑏𝑛 , we say that (𝑿𝑖 , 𝑌𝑖) is OOB if (𝑿𝑖 , 𝑌𝑖) ∈
L𝑛 \ L∗𝑏𝑛 . We denote by 𝑌(𝑖) the OOB prediction of 𝑌𝑖 , which is based only on trees
for which (𝑿𝑖 , 𝑌𝑖) is OOB. Our goal is to estimate the uncertainty in the prediction
𝑌 of a functional response 𝑌 using the OOB errors

𝑅oob
𝑖 := 𝑑F (𝑌𝑖 , 𝑌(𝑖) ), 𝑖 = 1, . . . , 𝑛, (55.3)

as an estimate of the actual prediction errors 𝑑F (𝑌𝑖 , 𝑚(𝑿𝑖)), 𝑖 = 1, . . . , 𝑛. Notice that
𝑌(𝑖) is quite different from the leave-one-out cross-validation prediction, denoted by
𝑌−𝑖 , which is formed by the prediction on 𝑿𝑖 of the forest trained withL𝑛\{(𝑿𝑖 , 𝑌𝑖)}.

Once a RF is trained using [8], we outline the procedure to obtain a specific OOB
prediction 𝑌(𝑖0 ) . By construction, certain observations are left out of each random
resample L∗𝑏𝑛 , and hence are OOB for the 𝑏th tree. Let B𝑖0 denote the indices of
the trees for which 𝑌𝑖0 is OOB. If 𝑏 ∈ B𝑖0 , calculate 𝜔𝑏

𝑖
(𝒙𝑖0 , 𝜽𝑏) as explained in

Section 55.2.2. For each 𝑏 ∉ B𝑖0 , set 𝜔𝑏
𝑖
(𝒙𝑖0 , 𝜽𝑏) = 0 for every 𝑖 = 1, . . . , 𝑛. Finally,

aggregate the weights as𝜔𝑖 (𝒙𝑖0 ) = |B𝑖0 |−1 ∑𝐵
𝑏=1 𝜔

𝑏
𝑖
(𝒙𝑖0 , 𝜽𝑏), and plug them in (55.2)

to obtain 𝑌(𝑖0 ) . The procedure described shows that OOB predictions estimate the
predictive power of the RF at no additional training cost, since it is only required to
select among the already grown trees.

55.3 Out-of-bag prediction regions for FDA

We develop confidence regions P1−𝛼 that contain the true functional variable 𝑌
within a given probability 1 − 𝛼, as a generalization for functional response and
multivariate predictors of the confidence intervals in [9]. Since the OOB errors
(55.3) provide a reliable estimate of the RF errors, it is natural to measure the
uncertainty in a RF prediction through the quantile of the empirical distribution
function of the OOB errors. This idea can be applied to FDA in the following way.

Definition 55.1 (Prediction region). The prediction region for functional predictors
𝒙 ∈ [0, 1] 𝑝 , with significance level 𝛼 ∈ (0, 1) is defined as

P1−𝛼 (𝒙,L𝑛) =
{
𝑦 ∈ F : 𝑑F (𝑚(𝒙), 𝑦) < 𝑅[1−𝛼,𝑛]

}
, (55.4)



55 Prediction Regions for Functional-valued Random Forests 455

where 𝑚(𝒙) is a RF estimation of the conditional Fréchet mean (55.1), and 𝑅[1−𝛼,𝑛]
denotes the (1 − 𝛼)-quantile of the empirical distribution based on 𝑅oob

1 , . . . , 𝑅oob
𝑛 .

We consider four probability coverage types, each suited to different statistical
contexts. For a significance level 𝛼 ∈ (0, 1):

• Type I: P {𝑌 ∈ P1−𝛼 (𝑿,L𝑛)}.
• Type II: P {𝑌 ∈ P1−𝛼 (𝑿,L𝑛) | L𝑛}.
• Type III: P {𝑌 ∈ P1−𝛼 (𝑿,L𝑛) | 𝑿 = 𝒙}.
• Type IV: P {𝑌 ∈ P1−𝛼 (𝑿,L𝑛) | L𝑛, 𝑿 = 𝒙}.

In the Euclidean case, guarantees of asymptotic convergence of these probabilities
to 1 − 𝛼 as 𝑛 diverges to infinity are provided in [9].

The following conditions are assumed for the application of the prediction re-
gions:

(c.1) (𝑿, 𝑌 ), (𝑿1, 𝑌1) , . . . , (𝑿𝑛, 𝑌𝑛) iid∼ G.
(c.2) The data generation process G is such that:

(c.2.1) There exists a unique conditional Fréchet mean (55.1) for every 𝒙 ∈ [0, 1] 𝑝
G-a.s.

(c.2.2) The radial error 𝑑F (𝑌, 𝑚(𝑿)) is independent from the predictor 𝑿.

These assumptions generalize some of the fundamental conditions defined in [9].
Assumption (c.1) ensures the identical distribution of the OOB radial errors (55.3).
Existence and uniqueness of the conditional Fréchet mean from assumption (c.2.1)
is required for the regression model to be well defined, and is a common assumption
that ensures the consistency of the RF estimators, see [8] or [3]. We conjecture that,
similarly to [9], the prediction regions (55.4) have correct asymptotic coverage under
conditions (c.1)–(c.2), also under metric-valued predictor. We leave this proof for
a future work, and assess the empirical coverage of the prediction regions through
simulations in the following section.

55.4 A numerical experiment

We consider a simple simulation scenario to illustrate the prediction regions and
test their empirical coverage for Types I–IV. The functional space F considered is
the 2-Wasserstein space W2 (R) of probability distributions on the real line with
finite second moment and endowed with the 2-Wasserstein metric 𝑑W2 . This space
is isomorphic to the subset of 𝐿2 [0, 1] of quantile functions, so the distance 𝑑W2

between two probability distributions P and Q ofW2 (R) can be expressed through the
respective quantile functions 𝐹−1

P and 𝐹−1
Q : 𝑑W2 (P,Q)2 =

∫ 1
0

��𝐹−1
P (𝑢)−𝐹

−1
Q (𝑢)

��2 d𝑢.
This isomorphism motivates the definition of regression models inW2 in terms of
the corresponding quantile functions. Following [7, Section 6.1], we consider the
regression function
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𝑚(𝑥) (·) = E(𝑌 (·) | 𝑋 = 𝑥) = 1
4
− log(1 + 𝑥) +

(
1
2
+ 𝑥2

)
Φ−1 (·),

for 𝑥 ∈ [0, 1], where Φ−1 denotes the quantile function of aN(0, 1) distribution. To
generate the response, consider

𝑌 (·) = 𝐶 − log(1 + 𝑋) + (𝑆 + 𝑋2)Φ−1 (·).

with 𝐶 ∼ Γ(1/2, 1/2) and 𝑆 ∼ Exp(2) independent of 𝑋 , so that the model satisfies
(c.2.2) and the conditional Fréchet mean of 𝑌 (·) | 𝑋 = 𝑥 is 𝑚(𝑥) (·) (c.2.1). We
consider that the predictor 𝑋 follows a 𝑈 (0, 1) distribution. The data generation
process of (𝑋,𝑌 (·)), which we denote by G, is illustrated in Figure 55.1.
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(a) Conditional Fréchet mean 𝑚(𝑥 )
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Fig. 55.1: Description of the data generation process G. In Panel (a), the regression
function (conditional Fréchet mean) is illustrated for different fixed values of the
predictor. Panel (b) contains ten realizations of the functional response 𝑌 (·) | 𝑋 = 0
and ten of 𝑌 (·) | 𝑋 = 1. In each case, the realizations of 𝑌 (·) | 𝑋 = 𝑥 are centered
around the regression function 𝑚(𝑥).

We generated 𝑁 = 500 samples of size 𝑛 = 400 according to the aforementioned
data generation process, and used the estimator (55.2) in [8] for constructing the RF.
Every forest is formed by 𝐵 = 200 trees, and each tree is trained with a subsample
of size 𝑛 generated with nonparametric bootstrap with replacement, using the imple-
mentation from [3] in the pyfréchet package for Python. Three different values
are considered for the significance level 𝛼: 0.01, 0.05, and 0.10.

For Types I–IV, each probability is estimated using 𝑀 = 500 Monte Carlo sam-
ples. In the case of Type I, the probability is estimated as follows:

P {𝑌 ∈ P1−𝛼 (𝑋,L𝑛)} ≈
1
𝑀

𝑀∑︁
𝑗=1

1{
𝑌𝑗 ∈P1−𝛼

(
𝑋 𝑗 ,L ( 𝑗)𝑛

) }
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for
(
(𝑋 𝑗 , 𝑌 𝑗 ),L ( 𝑗 )𝑛

)
such that, for every 𝑗 = 1, . . . , 𝑀 , (𝑋 𝑗 , 𝑌 𝑗 ) is independent of

L ( 𝑗 )𝑛 and (𝑋 𝑗 , 𝑌 𝑗 ) ∼ G, L ( 𝑗 )𝑛 ∼ G𝑛. For Type IV, the probabilities are estimated as

P
{
𝑌 ∈ P1−𝛼 (𝑋,L𝑛) | 𝑋 = 𝑥,L𝑛

}
≈ 1
𝑀

𝑀∑︁
𝑗=1

1{𝑌𝑗 ∈P1−𝛼 (𝑥,L𝑛 )} , (55.5)

for 𝑌 𝑗 | 𝑋 = 𝑥 induced by G, and 𝑥 ∈ {0, 0.5, 1}. The estimation of the probabilities
in Types II and III is analogous.

For Type I, coverages of 0.992, 0.946, and 0.91 were obtained, respectively, for
𝛼 = 0.01, 0.05, 0.10. For Type III with 𝑋 = 0 the simulations showed coverages
of 0.998, 0.956, and 0.928. With 𝑋 = 0.5, the coverages were 0.992, 0.958, and
0.916. Finally, with 𝑋 = 1, the coverages were 0.988, 0.916, and 0.864. The reported
coverages of Types II and IV are shown in Figure 55.2. The results show that our
prediction regions achieve overall correct coverage rates across the three significance
levels considered.
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Fig. 55.2: Reported coverage (Types II and IV) across the 𝑁 = 500 simulated
datasets. For Type IV, the value of the predictor 𝑋 = 0.5 was considered. Each
dot in the boxplots is associated to a dataset L (𝑘 )𝑛 , 𝑘 = 1, . . . , 𝑁 , and its vertical
position measures the estimated coverage probability (as in (55.5)) conditioned to
that dataset.

Figure 55.3 shows the shape of the prediction regions for different values of the
predictor 𝑋 and the significance level 𝛼. The prediction regions adapt to the shape
of the predicted curve as 𝑋 varies between 0 and 1.
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project. The second author acknowledges support from “Convocatoria de la Universidad Carlos III
de Madrid de Ayudas para la recualificación del sistema universitario español para 2021–2023”,
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(a) 𝑋 = 0, 𝛼 = 0.01 (b) 𝑋 = 0.5, 𝛼 = 0.01 (c) 𝑋 = 1, 𝛼 = 0.01

(d) 𝑋 = 0, 𝛼 = 0.10 (e) 𝑋 = 0.5, 𝛼 = 0.10 (f) 𝑋 = 1, 𝛼 = 0.10

Fig. 55.3: Examples of prediction regions for different values of 𝑋 and significance
levels 𝛼. To represent graphically the shape of each prediction region, 100 Monte
Carlo samples of 𝑌 | 𝑋 = 𝑥 inside the prediction region are shown.
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Journal of Machine Learning Research 25(107), 1–69 (2024)
9. Zhang, H., Zimmerman, J., Nettleton, D., Nordman, D.J.: Random forest prediction intervals.

The American Statistician 74(4), 392–406 (2020)


	An introduction to the 6th edition of the International Workshop on Functional and Operatorial Statistics
	Local Constant Likelihood Estimation for Beta Distribution with Time Varying Parameters
	On the estimation of invertible functional time series
	Uniform confidence bands for joint angles across different fatigue phases
	Scalar on Shape Regression Using Function Data
	A Comparison of Band-based Approaches to Functional Depth
	Analysing the Complexity Mixture Structure of Daily Probability Densities of Bitcoin Returns
	Statistical Properties of a Random Series Transmitted by Filtering
	Multi-Object Regression: A Linear Framework via Partial Least Squares
	Monitoring the Covariance of Multichannel Profiles
	Statistical Modeling of Categorical Trajectories with Multivariate Functional Data Approaches
	Markov Switching Multiple-equation Tensor Regressions
	Functional Data Depth for the Analysis of Earth Surface Temperatures
	Improving Finite Samples Performances in Nonparametric Functional Regression by Using Weighted Pseudo-metrics
	Smoothing with Nonlinear Partial Differential Equation regularization
	Functional Principal Component Analysis for Bivariate Densities and their Orthogonal Decomposition
	Estimating Multiple Quantile Surfaces: A Penalized Functional Approach
	Neural Drift Estimation for Ergodic Diffusions: Non-parametric Analysis and Numerical Exploration
	Amplitude-Invariant Functional Motif Discovery
	Testing the Significance of Covariates in Nonparametric Regression without the Curse of Dimensionality
	Gaussian Process Methods for Covariate-Based Intensity Estimation
	Spectral Analysis of Multidimensional Thermal Fields
	Forecasting Dynamic Factor Scores by UNALSE Spectral Density Matrix Estimator
	Testing for linearity and independence in scalar-on-function regression with responses missing at random by generalized distance covariance
	A Novel Spectral Density Operator Approach to Unveil Dynamic Time Dependencies in Multivariate Long-term ECGs
	Comparison of Deep Learning Methods for Functional Data
	The Common Support Function with Applications
	Multivariate Densities in Bayes Spaces: The Novel Concept of Marginals and Its Implications
	Functional K Sample Problem via Multivariate Optimal Measure Transport-Based Permutation Test
	Sequential Monitoring for Detection of Breaks in Panel Data
	Robust penalized splines for location estimation from discretely sampled functional data
	Functional regression with shape constraints
	Enhancing Causal Inference in Functional Data: a Method for Estimating Time-varying Causal Treatment Effects
	Linear and Nonlinear Regression Models for Spatial Downscaling of Particulate Matter
	A Bayesian Non-Parametric Model to Learn Functions with Discontinuties
	A Novel Approach To Estimate Functional Gaussian Graphical Model Based On Penalized Multivariate Functional Regression Model
	Local Null Hypothesis Significance Testing on Riemaniann Manifolds
	Efficient Bayesian Linear Models for a Large Number of Observations
	Innovative Approach to Wind Direction Data Analyses: A Compositional Periodic Spline Representation in Bayes Spaces
	Bayes Hilbert Space Additive Density-on-Scalar Regression Based on Individual Observations
	A Kernel-based Approach for Testing Mutual Independence of Several Functional Variables
	Addressing Robustness and Sparsity in Partially Linear Additive Models
	Covariance Operators for Phonetics: revisiting Tonal Coarticulation
	A-optimal Designs of Experiments in Linear Models with Dynamic Factors and Functional Responses
	Moving Object-Oriented Spatial Statistics Beyond Stationary and Euclidean Paradigms
	The Spherical Depth for Functional Data
	False Discovery Rate Envelope and its Performance for Local Testing in Functional Data Analysis
	Interpretable Functional Boxplots
	Scalar-on-function Regression with Partially Observed Covariate
	Efficient Physics-informed Smoothing of Space-time Functional Data
	Ordinal-on-function Dimensionality Reduction
	Varying Coefficient Regression Models on Fluvial Networks
	Non-Parametric Testing of Time Reversibility in Functional Data
	An LRD Spectral Test for Irregularly Discretely Observed Functional Time Series in Manifolds
	Prediction Regions for Functional-valuedRandom Forests
	Diego Serrano and Eduardo García-Portugués
	Introduction
	Random forests and FDA
	Out-of-bag prediction regions for FDA
	A numerical experiment
	References

























































