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Parametric distribution and regression models rely on accurately estimating probability distributions
from data. Under certain smoothness assumptions, maximum likelihood estimation is known to be
asymptotically efficient, i.e., it achieves the lowest possible variance among all consistent estimators
as the sample size increases. However, maximum likelihood estimation often requires computing the
normalizing constant of the distribution, which can be computationally challenging in high-dimensional
models or even in one-dimensional models. Besides, maximum likelihood estimation often leads to non-
explicit estimators that require from numerical optimization, even at simple models like a Gamma
distribution, Beta distribution or distributions in the exponential family, and the regression models
featuring them.

Score matching is an important method for fitting distribution models, offering a way to estimate param-
eters without needing to compute the normalizing constant and offering closed-form estimates where
maximum likelihood does not. Originally introduced by Aapo Hyvärinen in 2005 (Hyvärinen, 2005)
to deal with continuous random vectors on Rp, score matching has been generalized to accommodate
more general supports (Hyvärinen, 2007; Liu et al., 2022; Yu et al., 2019).

This thesis will focus on reviewing the foundations of score matching for data on Rp, comparing side-
to-side with maximum likelihood estimation in a variety of distribution models. Particularly, the
thesis will focus on evaluating the computational and mathematical effort required to implement both
methods, and on quantifying the asymptotic efficiency loss of score matching with respect to maximum
likelihood estimation, with the aim of building a comprehensive summary table. The study will be
done by numerical experiments.
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