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American put/call options are financial instruments that provide the holder the right, but not the
obligation, to sell/buy a given underlying financial asset (e.g., a stock) for a constant specific (strike)
price S > 0 at any time before an expiration date 7" > 0.

To find the best exercise strategy for an American option, it is common to assume that the price of the
underlying asset is modeled by a Stochastic Differential Equation (SDE):

dXt = ,u(t,Xt) dt+0’(t,Xt) th, t e [O,T],

where (W4)e(o,7 is a standard Brownian motion, and x and o are the functions representing the drift
and volatility of the asset (X¢)¢ejo,77-

CONTINUE

Figure 1: The OSB (continuous black line) splits the time-price space into two complementary regions:
the stopping set, in light orange, which lies above the OSB and includes all the pairs (¢, x)
where it is optimal to exercise the option; and the continuation set, in light blue. The asset’s
price is colored in green whenever it is profitable (but not necessarily optimal) to exercise the
option, that is below the strike price (dashed line) and in red otherwise. Optimal stopping
happens when the stock price first enters the stopping set.

The best time for exercising the corresponding American put option often coincides with the first
time X; steps below/above the graph of certain function b : [0,7] — R, called the Optimal Stopping
Boundary (OSB). See Peskir (2005) for a first mathematical treatment of the American option problem



with a geometric Brownian motion, that is, u(t,z) = rx and o(t,z) = cz, for r,c,z > 0. Figure 1
illustrates the OSB and the process (X¢):epo,77- Under some conditions, b can be defined as the unique
solution of a (free-boundary) integral equation, which can be solved numerically in practice.

This thesis proposal aims to explore the profit associated to exercising American options optimally when
the underlying asset behaves like an Ornstein—Uhlenbeck (OU) process and an Ornstein—Uhlenbeck
Bridge (OUB). An OU process, associated to u(t,z) = —fz and o(t,z) = v, for 6,v > 0, is often times
the go-to model for pair trading and volatility indexes. The OUB, which results after forcing an OU
process to hit a deterministic value z € R at a terminal time, is given by taking u(t, z) = 9%
and o(t,x) = v, for 6,v > 0. This latter process may prove itself useful for modeling the believes of an
investor with insight information about the asset’s price at the maturity date of the American option,
which may find applications when trading perishable assets or within the so-called stock pinning effect
(see, e.g., Avellaneda & Lipkin (2003), Ni et al. (2005), Jeannin et al. (2008), Avellaneda et al. (2012),
Ni et al. (2021)).

While the theoretical treatment of the optimal exercise of American options under OU processes and
OUBs can be found in Azze et al. (2024a) and Azze et al. (2024b), respectively, this thesis focuses
more on the applicability and numerical aspects. It involves:

e Finding, collecting, and processing data of stock prices that, either directly or after transforma-
tions, fit the OU and OUB models.

e Computing the OSB associated to the optimal exercise of American options and calculating the
profits made by following such optimal strategies.

o Assessing the model-robustness of the optimal strategies/profits.

o Comparing the profitability of assuming an OU/OUB model versus classical models in the liter-
ature.

The interested student must be proficient in data collecting, processing, and coding skills. Some sta-
tistical and mathematical knowledge would also be required. The thesis builds upon previous work
(D’Auria et al. (2020), Azze et al. (2024a), Azze et al. (2024b)) and access to software already de-
veloped is available (https://github.com/aguazz/AmOpBB, https://github.com/aguazz/OSP__OUB,
https://github.com/aguazz/ AmOpTDOU).
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