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Addressing noise reduction stands as a paramount challenge in the design of future aircraft: 1.3 
million of European citizens were exposed to more than 50 daily aircraft noise events above 70 dB 
during 2019 [EASA, 2022], increasing the risk of health issues. Aircraft noise abatement, in particular 
for turbofan engine noise, is required to address this issue. This project aims at deepening the 
knowledge in subsonic jet noise, i.e. the noise produced by the flow expelled by the engine, which 
represents one of the predominant noise sources. 

Subsonic jet noise is the result of the complex interplay between the more or less coherent 
flow structures covering the large wealth of turbulence scales which characterize the flow [Jordan 
and Colonius, 2013]. The nonlinear dynamics resulting from this interplay is ultimately responsible 
for the noise emission through a non-trivial relation. The lower number of scales involved in the 
noise which is propagated away from the jet suggests that only a handful flow structures are 
relevant for noise: suppressing/altering them could result in an abatement of noise levels without 
impacting effectively on the propulsive performances of the engine. However, the complex relation 
existing between flow structures and noise emission makes it difficult to identify which should be 
the objective of flow control for noise reduction. The objective of this research is to study this 
relation and use data-driven AI-based methods to identify the flow structures associated to noise 
(and conversely the patterns in sound pressure associated with flow states). Flow states/structures 
will be extracted from velocity fields either measured in jet experiments or resulting from CFD 
simulations. Sound patterns/states will be extracted from the acoustic pressure either measured in 
given location by microphone arrays or extracted from CFD data.   

The following TFE (TFG/TFM) projects are available in the frame of this research project: 

1. Data-driven determination of representative patterns in point pressure measurements in 
a jet flow 

This TFE project aims at producing an algorithm that assigns a state label to a tuple of sound signals 
from pressure probes surrounding a turbulent jet. The data used to this scope are extracted flow 
Large Eddy Simulation of a turbulent jet flow. To achieve the goal, the student will exploit 
dimension-reduction and clustering techniques (i.e., unsupervised learning) to partition the space 
of observed signals into representative domains. Dimension-reduction tools available from the 
literature on Functional Data Analysis (FDA) will be explored. Possible candidates will include 
Functional Principal Components (FPCs) [Ramsay and Silverman, 2005], t-Stochastic Neighbor 
Embedding (t-SNE) [van der Maaten, 2008] or Multi-Dimensional Scaling (MDS) [Borg and Gronen, 
2005] on different metrics of the signals. Additionally, dimension-reduction techniques designed for 
time series will be explored, such as dynamic principal components [see Peña and Tsai, 2021]. Some 
examples of the foreseen learned sound states are “no source in position x”, “pressure wavepacket 
with wavelength λ and peak at position x”, “quadrupole in position x”, “background noise”, etc. 
These states can be interpreted as alternatives to the beamforming maps for the microphone array, 
each associated to a specific kind of sound source in the turbulent jet. 
 
 



 
2. Identification of velocity/pressure field patterns in jet flows 

This TFE project will producing an algorithm that assigns a state label to temporal snapshots of 2D 
vector fields of the jet flow obtained in experiments or simulations. The choice of using 2D flow 
fields in this first stage is justified by the circular symmetry of the turbulent jet problem, where the 
azimuthal direction is homogeneous and thus effectively described via a Fourier decomposition. The 
use of 2D fields will reduce the amount of data recorded and fed to the algorithms. Extension to 3D 
flow field snapshots (using Tomographic PIV) will be considered for a limited dataset. Upon 
completion, the TFE will deliver an algorithm to cluster the space of the vector fields into different 
domains corresponding to separate flow patterns. To achieve this goal, we will consider the Spectral 
Proper Orthogonal Decomposition (SPOD) [Schmidt and Colonius, 2020], Hilbert POD [Raiola and 
Kriegseis, 2022], and nonlinear approaches exploiting the geometry of the vector field components, 
potentially creating adaptations of t-Stochastic Neighbor Embedding (t-SNE) [van der Maaten, 
2008], or Multi-Dimensional Scaling (MDS) [Borg and Gronen, 2005]. Some examples of the foreseen 
learned fluid states are “streamwise vortices passing by x position”, “ring vortices passing by x 
position”, “mild fine-scale turbulence at position x”, etc. The states of the flow can be interpreted 
as turbulent flow structures present in the flow. 
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